年金現(xiàn)值系數(shù)推導公式
你若安好
于2020-10-27 08:10 發(fā)布 ??2664次瀏覽
- 送心意
娜老師
職稱: CMA,中級會計師
2020-10-27 08:13
你好!計算公式:PA=A(P/A,i,n)=A/(1+i) +A/(1+i)^2+A/(1+i)^3+…+A/(1+i)^n
推導過程:
① PA=PA=A/(1+i) +A/(1+i)^2+A/(1+i)^3+…+A/(1+i)^n
② PA(1+i)=A+A/(1+i) +A/(1+i)^2+A/(1+i)^3+…+A/(1+i)^(n-1)
左側②-①= PA(1+i)-PA=PA×i
右側②-①=A-A/(1+i)^n
因此PA×i=A-A/(1+i)^n=A(1-1/(1+i)^n)
PA=A(P/A,i,n)=A(1-1/(1+i)^n)/i
(P/A,i,n)=(1-1/(1+i)^n)/i
相關問題討論

你好!計算公式:PA=A(P/A,i,n)=A/(1%2Bi) %2BA/(1%2Bi)^2%2BA/(1%2Bi)^3%2B…%2BA/(1%2Bi)^n
推導過程:
① PA=PA=A/(1%2Bi) %2BA/(1%2Bi)^2%2BA/(1%2Bi)^3%2B…%2BA/(1%2Bi)^n
② PA(1%2Bi)=A+A/(1%2Bi) %2BA/(1%2Bi)^2%2BA/(1%2Bi)^3%2B…%2BA/(1%2Bi)^(n-1)
左側②-①= PA(1%2Bi)-PA=PA×i
右側②-①=A-A/(1%2Bi)^n
因此PA×i=A-A/(1%2Bi)^n=A(1-1/(1%2Bi)^n)
PA=A(P/A,i,n)=A(1-1/(1%2Bi)^n)/i
(P/A,i,n)=(1-1/(1%2Bi)^n)/i
2020-10-27 08:13:27

用到了等比數(shù)列求和公式。
設利率為i,年數(shù)為n,假設每年期末投入1元錢,則每年折現(xiàn)值為1/(1+i),1/(1+i)^2,……,1/(1+i)^n為一比值為1/(1+i)的等比數(shù)列,其和
Sn=P(A,i,n)=a1/(1-q^n)/(1-q)=1/(1+i)[1-1/(1+i)^n]/[1-1/(1+i)]=[1-(1+i)^(-n)]/i
2020-02-02 21:44:53

您好,計算如下
普通年金現(xiàn)值系數(shù)=[1-(1+i)^-n]/i
復利現(xiàn)值系數(shù)=(1+i)^-n
可知:普通年金現(xiàn)值系數(shù)=(1-復利現(xiàn)值系數(shù))/i
2022-03-10 14:25:46

年金凈流量就是用你的凈現(xiàn)值除以一個年金系數(shù)就可以了,這個不用推理。
2021-05-24 15:24:09

方式一:把遞延期以后的年金套用普通年金公式求現(xiàn)值,這是求出來的現(xiàn)值是第一個等額收付前一期期末的數(shù)值,距離遞延年金的現(xiàn)值點還有m期,再向前按照復利現(xiàn)值公式折現(xiàn)m期即可。
P=A(P/A,i,n)×(P/F,i,m)
方式二:把遞延期每期期末都當作有等額的收付A,把遞延期和以后各期看成是一個普通年金,計算出這個普通年金的現(xiàn)值,再把遞延期多算的年金現(xiàn)值減掉即可。
公式:PO=A×[(P/A,i,m+n)-(P/A,i,m)]
方式三:先求遞延年金終值,再折現(xiàn)為現(xiàn)值。
P=A×(F/A,i,n)×(P/F,i,m+n)
2021-02-28 17:12:28
還沒有符合您的答案?立即在線咨詢老師 免費咨詢老師
精選問題
獲取全部相關問題信息